

IMU06

What is the IMU06?

The IMU06 is a compact 6 degree of freedom inertial measurement unit. It provides 3 axis acceleration (maximum 10G) and angular velocities (maximum 300 degrees/s) on both CAN and RS232 at user configurable data rates of up to 100Hz. The unit can also provide a timing pulse to indicate the moment at which the sample has been taken for data alignment purposes. It is available as both IP67 (IMU06WP) and IP55 (IMU06).

Figure 1: IMU06 general arrangement

Figure 2: IMU06WP general arrangement

Who is the IMU06 designed for?

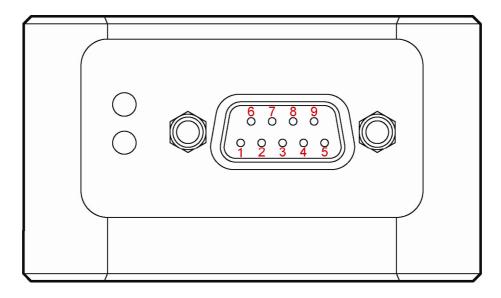
The IMU06 is designed for vehicle dynamics testing applications, particularly for suspension or braking testing. It can also find application in a number of other position sensing applications such as stability control.

How does the IMU06 integrate in to an existing data logging system?

There are two output formats available on the IMU06, RS232 and CAN data. The RS232 data is formatted using the Race Technology data format, detailed in Appendix A. This data can be fed directly in to a Race Technology data logger such as the DL1 or DL2, alternatively it can be viewed directly on a PC or Race Technology display product.

The CAN data can be user configured to use any two CAN channel IDs. This data is transmitted at selectable rates of up to 100Hz.

Ordering information


IP55 version: IMU06 IP67 version: IMU06WP

General Specification	IMU06	IMU06WP						
Power requirements	8-15v d	c, 150mA						
Case construction	Anodised	aluminium						
Maximum dimensions	60.4(W) X 70 (L) X 35 (H)	70.4(W) X 75 (L) X 35 (H)						
Mass	175g	220g						
Fixing method	5mm mounting holes mach	ined for M4 shoulder screws						
Sensor orientation	Pitch	Poll twe vertical acceleration twe lateral acceleration						
IP rating	IP55	IP67						
Operating temperature	-20 to +60°C							
Humidity	5-90% non condensation	5-95% non condensation						
Vibration	20g all axi	s 5 minutes						
Sensor alignment	Internal sensor ±0.2 degre	es from case mounting holes						
Pulse Output	5v, 25% duty cycle approx 100Hz.	Rising edge synchronised with data						

Technical Specification Gyroscopes										
Parameter	Conditions	Min	Тур	Max	Unit					
GYROSCOPE SENSITIVITY	Each axis									
Initial sensitivity	25°C, dynamic range = ± 300°/s	0.0725	0.07326	0.0740	°/s/LSB					
	25°C, dynamic range = ± 150°/s		0.03663		°/s/LSB					
	25°C, dynamic range = ± 75°/s		0.01832		°/s/LSB					
Temperature coefficient			40		ppm/°C					
Gyroscope axis nonorthogonality	25°C, difference from 90° ideal		±0.05		Degree					
Gyroscope axis misalignment	25°C, relative to base-plate and guide pins		±0.5		Degree					
Nonlinearity	Best fit straight line		0.1		% of FS					
GYROSCOPE BIAS										
In run bias stability	25°C, 1σ		0.015		°/s					
Angular random walk	25°C		4.2		°/√hr					
Temperature coefficient			0.01		°/s/°C					
Linear acceleration effect	Any axis, 1σ		0.05		°/s/ <i>g</i>					
GYROSCOPE NOISE PERFORMANCE										
Output noise	25°C, ± 300°/s range, 2-tap filter setting		0.60		°/s rms					
	25°C, ± 150°/s range, 8-tap filter setting		0.35		°/s rms					
	25°C, ± 75°/s range, 32-tap filter setting		0.17		°/s rms					
Rate noise density	25°C, f= 25 Hz, ± 300°/s, no filtering		0.05		°/s/√Hz rms					
GYROSCOPE FREQUENCY RESPONSE										
3 dB bandwidth			350		Hz					
Sensor resonant frequency			14		kHz					

Technical Specification Accelerometers										
Parameter	Conditions	Тур	Max	Unit						
ACCELEROMETER SENSITIVITY	Each axis									
Dynamic range		±8	±10		g					
Initial sensitivity	25°C	2.471	2.522	2.572	m <i>g</i> /LSB					
Temperature coefficient			40		ppm/°C					
Axis nonorthogonality	25°C, difference from 90° ideal		±0.25		Degree					
Axis misalignment	25°C, relative to base-plate and guide pins		±0.5		Degree					
Nonlinearity	Best fit straight line		±0.2		% of FS					
ACCELEROMETER BIAS										
In-run bias stability	25°C, 1σ		0.7		m <i>g</i>					
Velocity random walk	25°C		2.0		m/s/√hr					
Temperature coefficient			0.5		m <i>g</i> /°C					
ACCELEROMETER NOISE PERFORMANCE										
Output noise	25°C, no filtering		35		m <i>g</i> rms					
Noise density	25°C, no filtering		1.85		m <i>g</i> /√Hz rms					
ACCELEROMETER FREQUENCY RESPONSE										
3 dB bandwidth			350		Hz					
Sensor resonant frequency			10		kHz					

Connector pinout details

Connector p	inout details
Pin	Function
1	Calibrate switch (IP67 version only)
2	RS232 TX
3	RS232 RX
4	NC
5	GND
6	CAN L
7	Power in
8	CAN H
9	Timing signal

Calibration

The standard IMU06 unit has a calibration button positioned on the top of the unit. The button is small and is positioned flush with the main case to avoid unintended calibration during use. The button will require a pointed object to depress it.

The IP67 IMU06 unit requires an external switch to be connected for calibration. The switch must be connected between pin 1 and pin 5 of the d-type connector.

Appendix A. CAN data format

CAN data can be output at user selectable bit rates of 125k/250k/500k or 1Mbit. The output values can be transmitted at up to 100Hz. The address used by the CAN system can either by a Race Technology format 29 bit address, in which case the actual address used will be shown in the configuration software, or a user defined 11 or 29 bit address. The format of the output messages is as follows:

R	T	C	Αľ	V	M	e	SS	a	ge	9 9	Sp	e	ci	fic	ca	tic	or	1									
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

For all messages, bit zero of the validity byte refers to the first data (not accuracy) packet, bit 1 to the next data packet, etc. When the bit is 1, the data is valid, when the bit is zero, the data is invalid. Since the last 5 bits of the address are made up of the unit id, this will need to be added to the addresses shown. The default unit ID is 2. A .dbc file containing all signals is available on request.

Inertial messages (group 128) RT_Accel: 128, 0 (0x800020+ unit id) Byte 0: Validity Byte 1: Accuracy Bytes 2-3: Accel Longitudinal (g) Bytes 4-5: Accel Lateral (g) Bytes 6-7: Accel Vertical (g) Accel resolution is g/1000. RT_Gyro_Rates: 128, 1 (0x800120+ unit id) Byte 0: Validity Byte 1: Accuracy Bytes 2-3: Yaw rate (degrees/s) Bytes 4-5: Pitch rate (degrees/s) Bytes 6-7: Roll rate (degrees/s) Rate resolutions are degrees/s/100.

Race Technology CAN address format

When the option is selected to use the Race Technology addressing system. This should be selected whenever the IMU is used along with other Race Technology units on a CAN bus. The message contents are exactly the same irrespective of mode, but in the RT format mode the 29 bit address is used to carry data as to the data type, source, and destination. As follows:

All messages use a 29 bit address, made up as follows:

3 bit priority

These are set by the transmitter. The lower the number the higher the priority.

2 bits for future expansion (currently set as 00)

16 bit data type

If the MSB is <128 then this is a destination specific message, the destination address is given by the LSB (Data Format 1)

If the MSB is >127 this is a broadcast message, the MSB determines the main data type, LSB determines the sub type (Data Format 2)

8 bit source address

The top three bits are the data group, the lower 5 bits are the particular unit within that group. Default values are set on units, these will only need to be changed when there is more than one of a particular unit on the CAN network. Groups are as follows.

- 1 Data source
- 2 Displays
- 3 Data stores

Units are assigned to a group based on their primary function. A data logger will be classed as a data store, even if it has some built in channels.

Default unit numbers are as follows:

Data source group

- 1 IMU06
- 2 SPEEDBOX
- 3 BRAKEBOX

Appendix B. RS232 data format

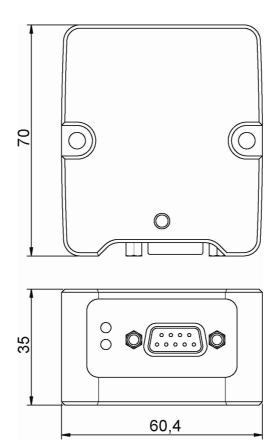
The RS232 data is transmitted in packets at 115200baud using the standard Race Technology format. Each message consists of a header byte, data bytes, and a checksum byte. The checksum is calculated as the sum of all preceding bytes MOD256.

Accelerometer data

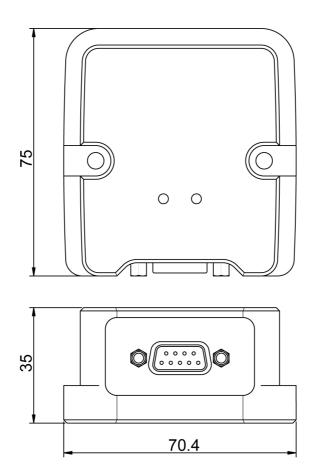
Late	Lateral and longitudinal acceleration – Channel 8, 4 bytes								
Data bytes 1 and 2	Lateral acceleration								
	Format	Big endian (raw hex). 15 data bits, 1 sign bit							
	Signing	Sign-and-magnitude. First bit (msb) is sign (0 => -ve)							
	Units	g							
	Scaling	Output = g x 256							
	Example	Acc(g) = (byte 1 & 0x&F) + (byte 2 / 256) If $(byte 1 \& 0x\&O) = 0$, $Acc = -Acc$							
Data bytes 3 and 4	Longitudinal acceleration								
	Format	All format the same as lateral acceleration above							

Vertical acceleration – Channel 92, 2 bytes							
Data bytes 1 and 2	v	ertical acceleration					
	Format	All format the same as lateral acceleration above					

Gyroscope data

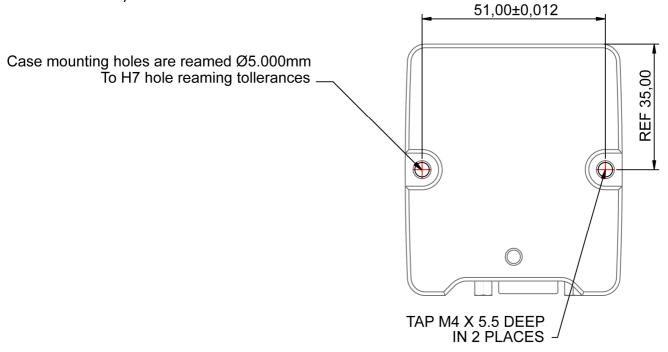

Yaw rate - Channel 79, 2 bytes								
Data bytes 1 and 2	Yaw rate							
	Format	Big endian (raw hex). 16 data bits						
	Signing	Unsigned						
	Units	Degrees						
	Scaling	Output = 327.68 - degrees x 0.01						

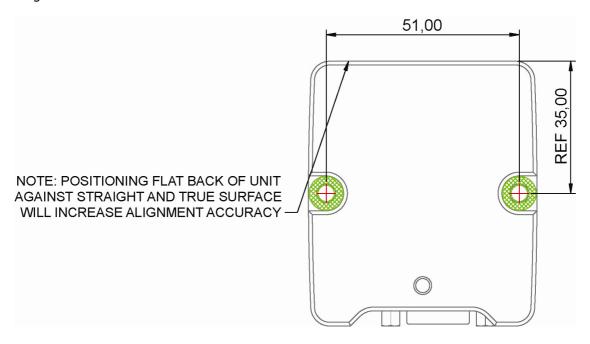
Pitch rate — Channel 81, 3 bytes								
Data bytes 1 and 2	Pitch rate							
	Format	Big endian (raw hex). 16 data bits						
	Signing	Unsigned						
	Units	Degrees						
	Scaling	Output = 327.68 - degrees x 0.01						
Data byte 3	Pitch rate accuracy estimate							
	Format	Big endian (raw hex). 32 data bits						
	Signing	Unsigned						
	Units	Undefined, lower is better						


Roll rate – Channel 84, 3 bytes								
Data bytes 1 and 2	Roll rate							
	Format	Big endian (raw hex). 16 data bits						
	Signing Unsigned							
	Units	Degrees						
	Scaling	Output = 327.68 - degrees x 0.01						
Data byte 3	Roll rate accuracy estimate							
	Format	Big endian (raw hex). 32 data bits						
	Signing	Unsigned						
	Units	Undefined, lower is better						

Dimensions

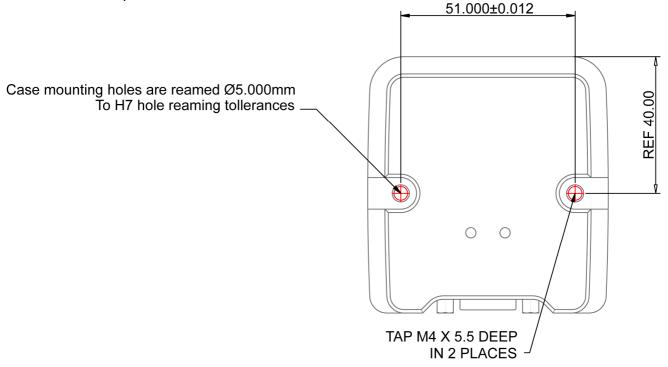
IMU06:


IMU06WP:

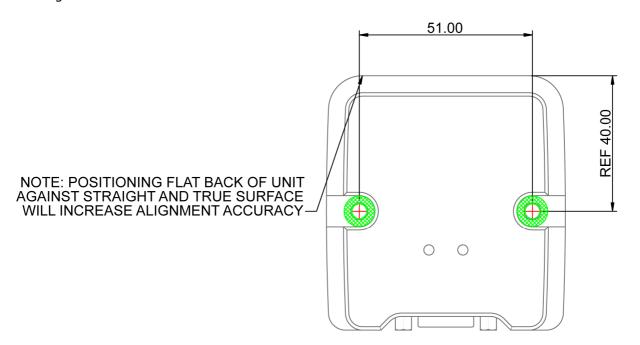

Race Technology Ltd. VAT 715 9671 09 UK Tel +44 (0)1773 537620 Fax +44 (0)1773 537621 US Tel 804 358 7289 Fax 804 359 6694 Email: sales@race-technology.com

Mounting the unit - IMU06

Two different mounting options are available. For a highly accurate alignment shoulder screws are used in the reamed 5mm diameter mounting holes. This option is recommended to ensure the correct alignment of the unit and the accuracy of the measurement.



For applications where this recommended mounting option is not possible to implement, a second non critical alignment option is available. We recommend that the flat back surface of the unit is used to align the unit against a flat aligned reference surface. The M4 clearance washers fit in the mounting recess and allow standard M4 mounting screws to hold the unit securely. This mounting option is not designed to ensure accurate alignment.



Mounting the unit - IMU06WP

Two different mounting options are available. For a highly accurate alignment shoulder screws are used in the reamed 5mm diameter mounting holes. This option is recommended to ensure the correct alignment of the unit and the accuracy of the measurement.

For applications where this recommended mounting option is not possible to implement, a second non critical alignment option is available. We recommend that the flat back surface of the unit is used to align the unit against a flat aligned reference surface. The M4 clearance washers fit in the mounting recess and allow standard M4 mounting screws to hold the unit securely. This mounting option is not designed to ensure accurate alignment.

