Analogue Angular Rate Sensor

High Performance MEMS Gyroscope - OEM Configuration

www.siliconsensing.com

Features

- Proven and Robust silicon MEMS VSG3Q^{MAX} vibrating ring structure
- Two rate ranges currently available: ±100%, ±200%. Others available
- FOG like performance
- Low Bias Instability 0.12°/hr
- Excellent Angle Random Walk 0.017°/√hr
- Low noise 0.15% rms (50Hz bandwidth) - 0.20°/s rms (100Hz bandwidth)
- Precision analogue output
- High shock and vibration rejection
- Wide range from -40°C to +85°C
- Temperature sensor output for precision thermal compensation
- MEMS frequency output for precision thermal compensation
- RoHS Compliant

Applications

- IMU Applications
- Platform Stabilisation
- Precision Surveying
- Maritime Guidance and Control
- Gyro-compassing and Heading Control
- Autonomous Vehicles and ROVs
- Rail Track monitoring
- Robotics
- Drilling Equipment and Guidance
- Inertial Measurement Units

1 General Description

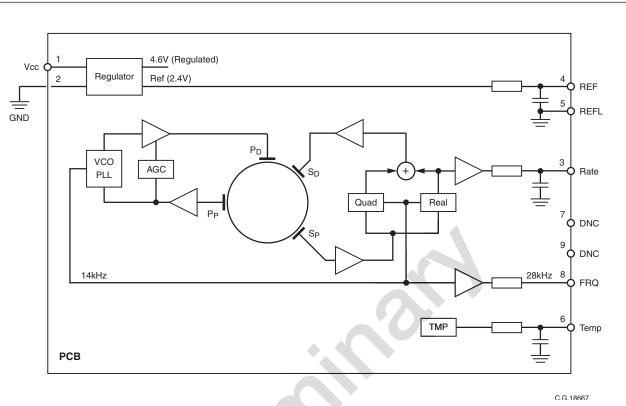
CRH02 (OEM) provides the optimum solution for OEM customers with applications where bias instability, angle random walk and low noise are of critical importance.

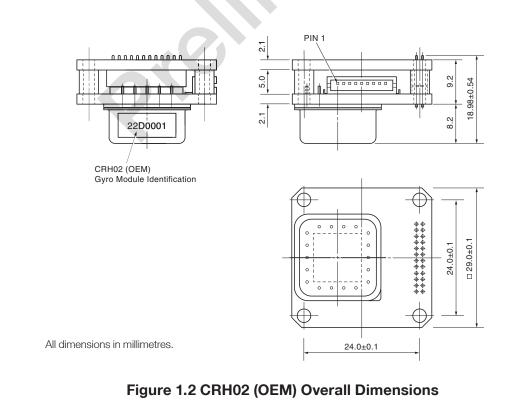
At the heart of CRH02 (OEM) is Silicon Sensing's VSG3Q^{MAX} vibrating ring MEMS sensor which is at the pinnacle of 15 years of design evolution and the latest off a line which has produced over 30 million high integrity MEMS inertial sensors. The VSG3Q^{MAX} gyro sensor is combined with precision discrete electronics to achieve high stability and low noise, making the CRH02 (OEM) a viable lower cost MEMS alternative to Fibre-Optic Gyro (FOG) and Dynamically Tuned Gyro (DTG).

An on board temperature sensor and the resonant frequency of the MEMS enables additional external conditioning to be applied to the CRH02 (OEM) by the host, enhancing the performance even further.

Typical applications include downhole surveying, drilling equipment, precision platform stabilisation, ship stabilisation, ship guidance and control, autonomous vehicles, high-end AHRS and other flight instruments.

Whatever your application, the unique and patented silicon ring technology gives advanced and stable performance over time and temperature, overcoming mount sensitivity problems associated with simple beam or tuning fork based sensors.

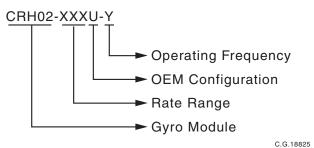

Multi-axis and IMU applications: For system applications which require multiple CRH02 (OEM) avros to be fitted. for example in an IMU, it is advised that different operating frequency gyros are used on each axis to improve IMU performance and prevent the possible occurrence of cross-axis interference between gyros. See Sections 2 and 7.6 for further advice on multi-axis applications.


www.siliconsensing.com

Analogue Angular Rate Sensor

High Performance MEMS Gyroscope - OEM Configuration

Figure 1.1 CRH02 (OEM) Functional Block Diagram


Analogue Angular Rate Sensor

www.siliconsensing.com

High Performance MEMS Gyroscope - OEM Configuration

2 Ordering Information

Figure 2.1 Ordering Part Number Definition

CRH02 (OEM) is available in four possible rate ranges and each rate range is available in three different operating frequencies designated; M, L & V. 'Operating Frequency' refers to the internal sensor operating resonant frequency. There is no difference in the function, performance or interface to the different operating frequency parts.

Single-axis applications: For applications which only require one axis of angular rate measurement per system the ordering part number is; CRH02-XXXU-L, where XXX denotes the selected rate range.

Multi-axis (IMU) applications: For applications which three axes of angular rate measurement per system it is advised that different operating frequency gyros are used on each axis to improve IMU performance and prevent the possible occurrence of cross-axis interference between gyros. The parts required will be ordered in multiples of three; e.g. CRH02-XXXU-M, CRH02-XXXU-L and CRH02-XXXU-V, where XXX denotes the selected rate range.

Rate Range (XXX)	Operating Frequency (Y)	Ordering Part Number	Multi-Axis (IMU) Application?	Single-Axis Application?
±25°/s	М			Х
±25°/s	L	Enquire	\checkmark	\checkmark
±25°/s	V			Х
±100%s	М	Enquire		Х
±100%s	L	CRH02-100U-L	√	\checkmark
±100%s	V	Enquire		Х
±200°/s	М	CRH02-200U-M		Х
±200°/s	L	CRH02-200U-L	√	\checkmark
±200°/s	V	CRH02-200U-V		Х
±400°/s	M			Х
±400°/s	L	Enquire	√	\checkmark
±400°/s	V			Х

Table 2.1 Ordering Information

Analogue Angular Rate Sensor

SILICON^C SENSING。

www.siliconsensing.com

High Performance MEMS Gyroscope - OEM Configuration

3 Specification

Unless otherwise specified the following specification values assume Vdd = 4.85 to 5.25V and an ambient temperature of $+25^{\circ}$ C. "Over temperature" refers to the temperature range -40° C to $+85^{\circ}$ C.

Parameter		Minimum	Typical	Maximum	Notes
Characteristic					
	CRH02-025U	±25°/s			-
	CRH02-100U	±100%s			_
Rate Range	CRH02-200U	±200°/s			-
	CRH02-400U		±400°/s		-
	CRH02-025U	79.6mV/°/s	80.0mV/°/s	80.4mV/%s	_
Casta Fastar at 05°C	CRH02-100U	19.9mV/°/s	20.0mV/°/s	20.1mV/°/s	_
Scale Factor at 25°C	CRH02-200U	9.95mV/°/s	10.0mV/°/s	10.05mV/°/s	_
	CRH02-400U	4.975mV/°/s	5.00mV/%s	5.025mV/°/s	_
Scale Factor Variation	CRH02-025U CRH02-100U	-0.5%	±0.15%	+0.5%	_
Over Temperature with respect to 25°C value	CRH02-200U CRH02-400U	-0.5%	±0.3%	+0.5%	_
Scale Factor Non-Linearity	CRH02-025U CRH02-100U CRH02-200U CRH02-400U	-0.05%	±0.02%	+0.05%	_
Bias at 25°C with respect to REF	CRH02-4000 CRH02 (OEM)	-10mV	_	+10mV	_
Bias Over Temperature with respect to RT (25°C)	CRH02-025U CRH02-100U	-0.2%s	±0.1%	+0.2°/s	-
	CRH02-200U CRH02-400U	-0.25%s	±0.15%s	+0.25°/s	_
	CRH02-025U		0.017°∕√hr	_	As measured using the Allan Variance method (Note 1)
Angular Random Walk	CRH02-100U				
	CRH02-200U				
	CRH02-400U				
Bias Instability	CRH02-025U		0.12°/hr	_	As measured using the Allan Variance method (Note 2)
	CRH02-100U				
	CRH02-200U				
	CRH02-400U				

Analogue Angular Rate Sensor

SILICON^C SENSING www.siliconsensing.com

High Performance MEMS Gyroscope - OEM Configuration

3 Specification Continued

Parameter		Minimum	Typical	Maximum	Notes
Characteristic					
	CRH02-025U	_	0.15% rms	_	3~100Hz
	CRH02-100U	_	0.20% rms	_	3~100Hz
Quiescent Noise	CRH02-200U	_	0.20°/s rms	_	3~100Hz
	CRH02-400U	_	0.15% rms	_	3~100Hz
	CRH02-025U	_	50Hz	_	-
Dandwidth	CRH02-100U	_	100Hz	-	_
Bandwidth	CRH02-200U	_	100Hz	-	-
	CRH02-400U	_	50Hz		-
Reference Output		2.380V	2.400V	2.420V	With respect to REFL output impedance 510ohm
Start Up Time		_	-	750ms	_
Physical					
Mass		_	17gram	_	-
Cross Axis Sensitivity		-	-	3%	-
Environmental					
Temperature (Operating	1)	-40°C	-	85°C	-
Temperature (Storage)		-40°C	-	100°C	-
Humidity		-	-	95%	Non-condensing
Linear Acceleration Ser	nsitivity		0.02°/s/g	_	_
Shock (Operating)		-	-	95g x 6ms	1⁄2 sine (Note 3)
Shock (Powered Surviv	al)	_	-	1,000g x 1ms	1⁄2 sine (Note 3)
Vibration Rectification Error		_	0.002°/s/g²rms	_	10-2,000Hz 10g rms
Vibration Induced Noise		_	0.01% rms/g² rms	_	10-2,000Hz 10g rms
MTTF		_	70,000hr	_	Calculation for continuous operation at +85°C
Electrical					
Supply Voltage (Functional)		4.75V	_	5.25V	-
Supply Voltage (Full Specification)		4.85V	_	5.25V	-
Current Consumption		_	60mA	70mA	_

Note 1: The angle random walk is the value derived at the intercept of the - 1/2 tangent on the Allan Variance plot and the 1 second correlation point (tau) divided by 60.

Note 2: The bias instability is the value at the minimum part of the Allan Variance plot, usually between 10s and 100s.

Note 3: The environmental specification values refer to the CRH02 (OEM) gyro module after assembly into the host system as defined in Section 7.7.

Analogue Angular Rate Sensor

SILICON^C SENSING

High Performance MEMS Gyroscope - OEM Configuration

www.siliconsensing.com

4 Absolute Maximum

Parameter	Minimum	Maximum				
Electrical						
Supply Voltage	_	6.0V				
ESD Protection	_	2kV HBM				
Temperature						
Operating	-40°C	85°C				
Storage	-40°C	100°C				
Humidity (Non-condensing)	-	95%				

5 Auxillary Output Signals

5 Auxillary Outp	out Signals					
Parameter	Minimum	Typical	Maximum	Notes		
Frequency						
Resonanting Ring Frequency	27kHz	28.0kHz	29kHz	Output impedance 1kohm		
Frequency Temperature Coefficient	-0.9Hz/°C	-0.80Hz/°C	-0.7Hz/°C	_		
Temperature						
Temperature Sensor Offset at 0°C	-	-0.536V	_	With respect to REF output impedance 510ohm		
Temperature Sensor Offset at 25°C	_	-0.830V	_	With respect to REF output impedance 510ohm		
Temperature Sensor Scale Factor	-12.60mV/°C	-11.77mV/°C	-11.00mV/°C	Output impedance 510ohm		

Analogue Angular Rate Sensor

High Performance MEMS Gyroscope - OEM Configuration

6 Typical Performance Characteristics

This section shows the typical performance of CRH02 (OEM), supplied with a 5.0V supply unless stated otherwise.

6.1 Bias Characteristics

This section shows typical bias variation over temperature with, respect to the bias at +25°C.

over Temperature

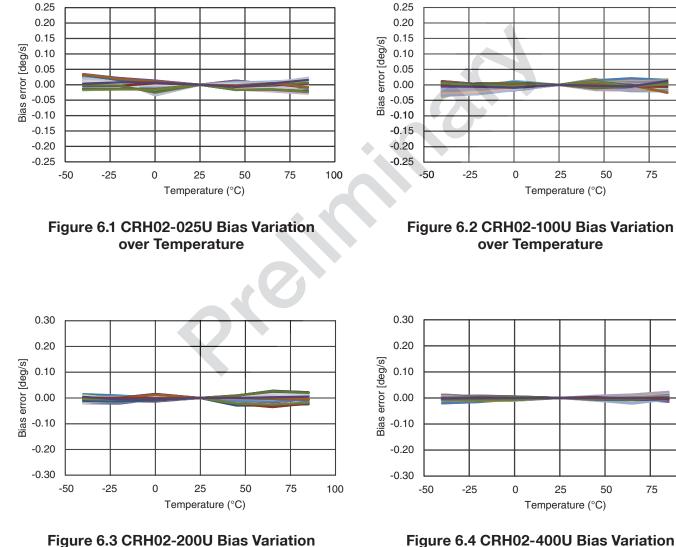


Figure 6.4 CRH02-400U Bias Variation over Temperature

© Copyright 2018 Silicon Sensing Systems Limited. All rights reserved. Silicon Sensing is an Atlantic Inertial Systems, Sumitomo Precision Products joint venture company. Specification subject to change without notice.

100

100

www.siliconsensing.com

Analogue Angular Rate Sensor

High Performance MEMS Gyroscope - OEM Configuration

6.2 Scale Factor Characteristics

This section shows the typical scale factor variation over temperature, with respect to the scale factor at +25°C.

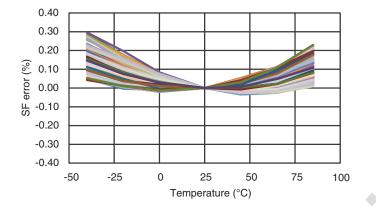
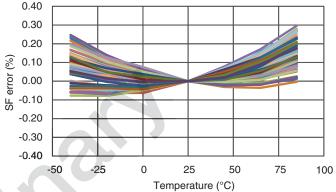



Figure 6.5 CRH02-025U Scale Factor Error over Temperature

SILICON^C SENSING

www.siliconsensing.com

Figure 6.6 CRH02-100U Scale Factor Error over Temperature

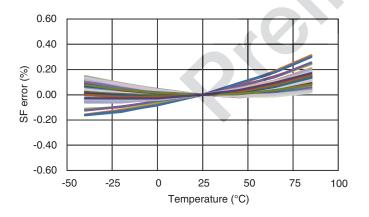
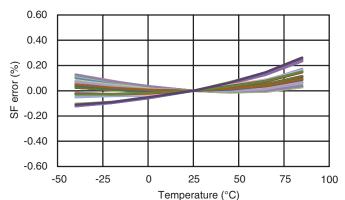
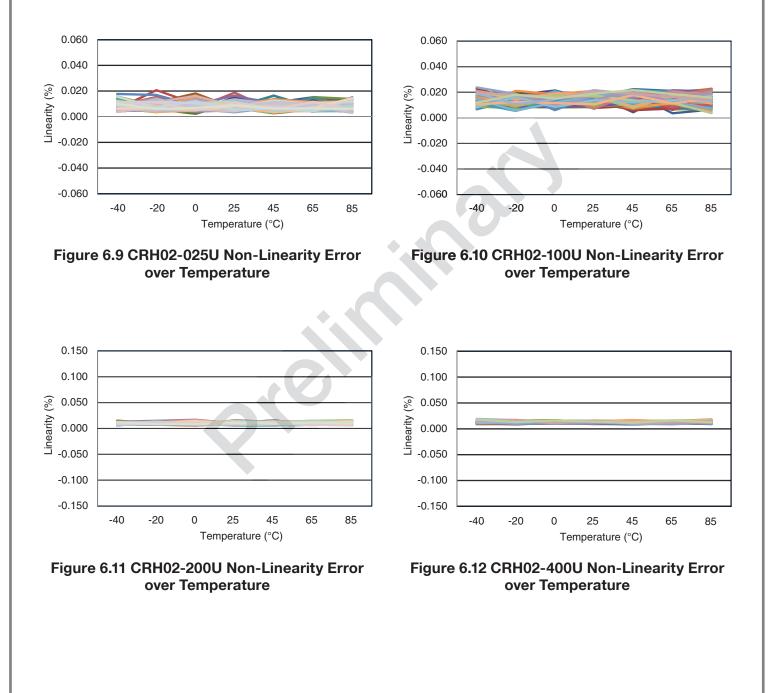



Figure 6.7 CRH02-200U Scale Factor Error over Temperature

Figure 6.8 CRH02-400U Scale Factor Error over Temperature

SILICON^C SENSING


www.siliconsensing.com

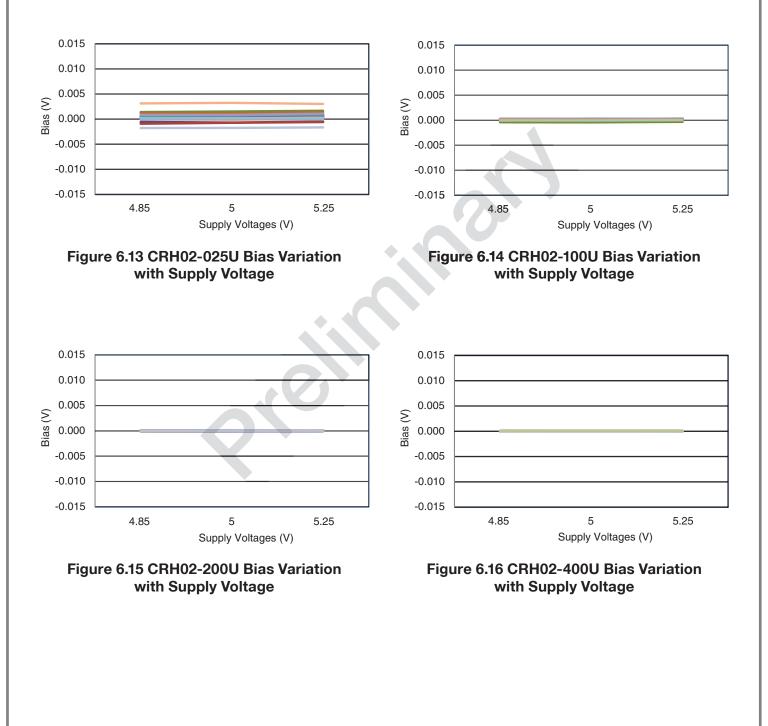
Analogue Angular Rate Sensor

High Performance MEMS Gyroscope - OEM Configuration

6.3 Non-Linearity Characteristics

This section shows the typical non-linearity error over temperature.

SILICON^C SENSING


www.siliconsensing.com

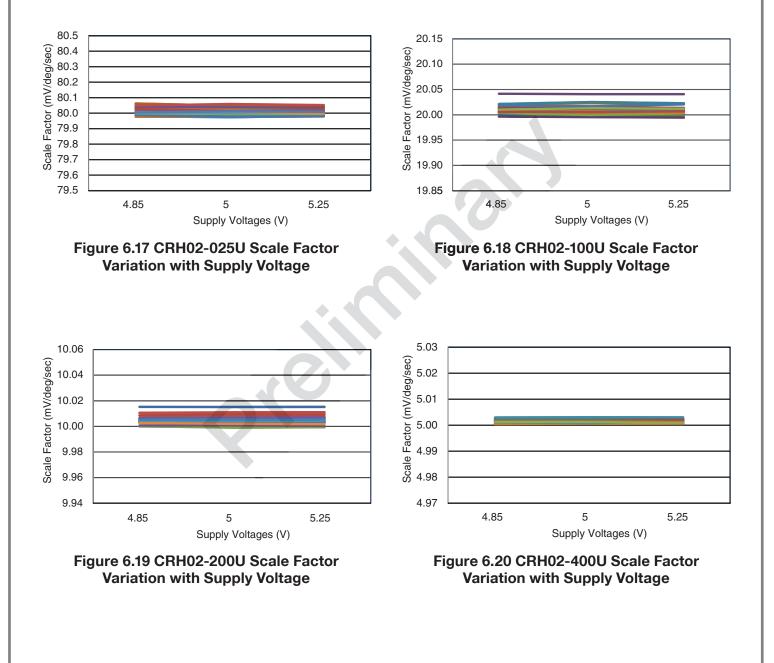
Analogue Angular Rate Sensor

High Performance MEMS Gyroscope - OEM Configuration

6.4 Bias Variation with Supply Voltage

This section shows the typical Bias Variation with Supply Voltage at 25°C.

SILICON^C SENSING


www.siliconsensing.com

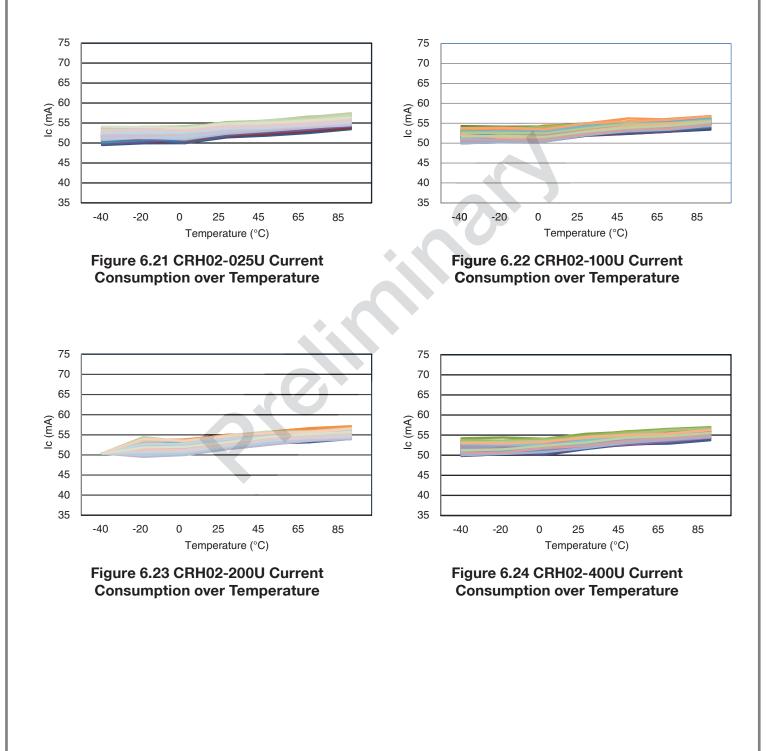
Analogue Angular Rate Sensor

High Performance MEMS Gyroscope - OEM Configuration

6.5 Scale Factor Variation with Supply Voltage

This section shows the typical Scale Factor Variation with Supply Voltage at 25°C.

SILICON^C SENSING


www.siliconsensing.com

Analogue Angular Rate Sensor

High Performance MEMS Gyroscope - OEM Configuration

6.6 Current Consumption with Temperature

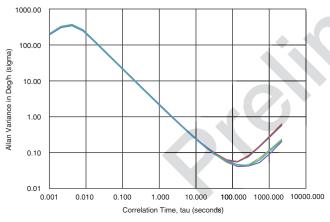
This section shows the typical Current Consumption over temperature.

Analogue Angular Rate Sensor

www.siliconsensing.com

SILICON^C SENSING

High Performance MEMS Gyroscope - OEM Configuration


6.7 Allan Variance Current Consumption with Temperature

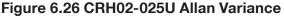
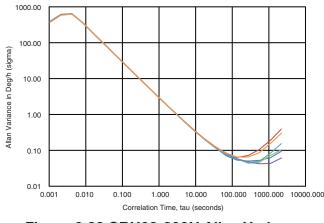
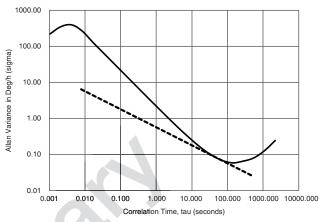
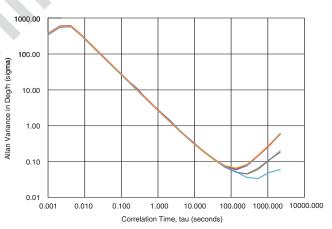

This section shows the typical Allan Variance graphs for the CRH02 (OEM)'s at constant temperature.

Figure 6.25 shows a general Allan Variance graph as a guide for calculating Bias Instability and Angle Random Walk. The Angle Random Walk is calculated as follows:

- a. A line is drawn tangential to the Allan Variance graph at a -1/2 gradient (on a log-log plot).
- b. The line is extrapolated to intercept the 1 second correlation point (tau). The value at the intercept point is noted.
- c. The Angle Random Walk is this value, in units of degrees/hour, divided by 60. In the Figure 6.25, the line intercept the 1 second correlation time at 0.57%, giving an Angle Random Walk of 0.01%.

The Bias Instability is value at the minimum part of the Allan Variance plot, usually between correlation times of 10s and 100s. In the Figure 6.25, the Bias Instability is approximately 0.05°/h.

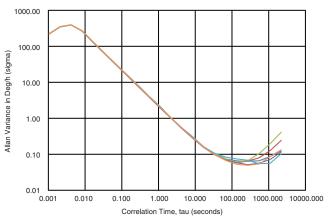
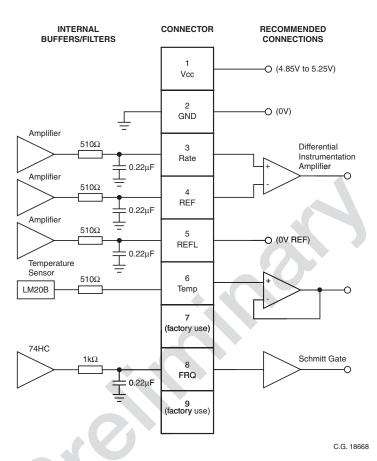

Figure 6.28 CRH02-200U Allan Variance

Figure 6.25 Derivation of Angle Random Walk and Bias Instability

Figure 6.27 CRH02-100U Allan Variance


Figure 6.29 CRH02-400U Allan Variance

SILICON^C SENSING

Analogue Angular Rate Sensor

www.siliconsensing.com High Performance MEMS Gyroscope - OEM Configuration

7 Interface

Figure 7.1 Typical Interface Schematic

Pin Number	Pin Name	Signal Direction (I/O)	Function	
1	Vcc	_	Power supply to Sensor (4.85V~5.25V)	
2	GND	_	Power ground	
3	Rate	Output	Rate output with respect to REF	
4	REF	Output	Reference voltage Datum for Rate, Temp	
5	REFL	Output	Reference Low voltage	
6	Temp	Output	Temperature output with respect to REF	
7	DNC	_	Do Not Connect (factory use)	
8	FRQ	Output	Second Harmonic Resonating Ring Frequency output	
9	DNC	_	Do Not Connect (factory use)	

Table 7.1 Connector Pin Identifications

Analogue Angular Rate Sensor

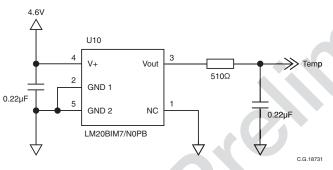
www.siliconsensing.com

High Performance MEMS Gyroscope - OEM Configuration

7.1 Supply Voltage

The CRH02 (OEM) consists of angular rate sensors with non-ratiometric characteristics that are independent of the supplied voltage, provided the supplied voltage is within the operating voltage range.

The supply voltage, including ripple voltage and power supply noise, must be controlled so that it does not drop below 4.85V in order to maintain full performance.


7.2 Mating Cable Assembly

The recommended mating cable assembly is Hirose Electric Co., Ltd. Part Number: DF13A-9S-1.25C.

The cable assembly is not supplied.

7.3 Temperature Sensor

The temperature sensor uses a LM20B device, internally connected as shown in Figure 7.2.

Figure 7.2 Temperature Sensor

The output at 0°C is typically +1.864V with respect to REFL. The temperature coefficient is typically -11.77 mV/°C.

The output can be measured with respect to REFL or can be put through a differential input instrumentation amplifier, referenced to the REF pin, in which case the offset at 0°C is typically -0.536V. At +25°C, the output is typically -0.830V with respect to REF. The temperature sensor is not intended for use as a thermometer, since they are not calibrated on the Celsius scale. They are intended only as a temperature reference for thermal compensation techniques.

7.4 Rate and Ref Outputs

Both the Rate and the REF outputs are protected by a resistor before the output pins. The resistor value is 510 ohms.

It is important to take these resistor values into account when calculating the gains of external differential amplifiers. It is also recommended that the REF signal is buffered if it is used as a reference for more than one signal.

It is recommended that the Rate Output is differentially sensed using a precision instrumentation amplifier, referenced to the REF output. A reference Low (0V), REFL is also provided as a ground reference for external ADCS (see Figure 7.1).

The Offset of the instrumentation amplifier should be derived from the host stage (e.g. derived from the ADC REF Voltage) or from the signal ground if the following stage is an analogue stage.

7.5 Frequency Outputs

This is CMOS Digital (74HC series) compatible digital output at two times the frequency of the sensor head. It is provided to give an indication of the temperature of the MEMS sensor head. The nominal frequency is 28 KHz with a typical temperature coefficient of -0.8 Hz/°C.

The signal is protected with a 1Kohm resistor before being output from the CRH02 (OEM). It is recommended that this signal is buffered with a CMOS Schmitt Gate such as 74HC12, or TC7S14F. The signal can be used to accurately measure the temperature of the MEMS structure.

An example of measuring the MEMS temperature is to use a precision crystal oscillator (operating at a very high frequency, for example 20, 40 or 60 MHz) to measure the frequency of the ring by measuring the time (oscillator clock cycles) to count to a defined number of ring cycles.

7.6 Interaction between Multiple **Gyroscopes**

The resonant operating frequency of the gyroscope is nominally 14kHz. If multiple gyroscopes are operated together, there is the possibility of interaction between them, causing a beat frequency to become apparent on their outputs.

Where optimum performance is required, it is recommended that each gyroscope is carefully isolated, both electrically and mechanically.

Electrical isolation can be achieved by using a separate low drop out linear power regulator for each gyroscope.

Mechanical isolation can be achieved by mounting the gyroscopes as far apart from each-other as possible or by the use of anti-vibration or compliant mounts.

Analogue Angular Rate Sensor

www.siliconsensing.com

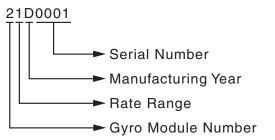
High Performance MEMS Gyroscope - OEM Configuration

7.7 Physical Interface, Mounting and **Handling Instructions**

The CRH02 (OEM) PCBA stack is held together using adhesive between the brass spacer pillars and each of the two PCBAs. This is to enable ease of assembly to the host application by using four M2 machine screws inserted through the clearance holes located in each of the four corners of the PCBA.

IMPORTANT: Care must be taken not to apply undue pressure on the CRH02 (OEM) during handling and fitting into host system to prevent disturbing the assembly until all four screws are secured to the correct torque setting (0.05Nm).

8 Glossary of Terms


ADC	Analogue to Digital Converter
ARW	Angular Random Walk
BW	Bandwidth
С	Celsius or Centigrade
DAC	Digital to Analogue Converter
DPH	Degrees Per Hour
DPS	Degrees Per Second
DRIE	Deep Reactive Ion Etch
EMC	Electro-Magnetic Compatibility
ESD	Electro-Static Damage
F	Farads
h	Hour
НВМ	Human Body Model
Hz	Hertz, Cycle Per Second
К	Kilo
MEMS	Micro-Electro Mechanical Systems
mV	Milli-Volts
NEC	Not Electrically Connected
NL	Scale Factor Non-Linearity
PD	Primary Drive
PP	Primary Pick-Off
RC	Resistor and Capacitor filter
S	Seconds
SF	Scale Factor
SMT	Surface Mount Technology
SOG	Silicon On Glass
SD	Secondary Drive
SP	Secondary Pick-Off
T.B.A.	To Be Announced
T.B.D.	To Be Described
V	Volts
VSG	Vibrating Structure Gyroscope
w.r.t.	With Respect To

Analogue Angular Rate Sensor

High Performance MEMS Gyroscope - OEM Configuration

9 Part Marking

The white label affixed to the side of the SGH03 sensor contains the unique CRH02 (OEM) part identification. See Figure 9.1 and Table 9.1 for details.

C.G.18826

Figure 9.1 CRH02 (OEM) Gyro Module Identification

Gyro Module Number	Rate Range	Manufacturing Year	Serial Number
2 = CRH02	1 = 025°/s	D = 2014	
	2 = 100°/s	E = 2015	0001 to 9,9 99
	3 = 200°/s	F = 2016	
	4 = 400°/s	etc	

Table 9.1 CRH02 (OEM) Gyro Module Identification Code

10 Silicon MEMS Ring Sensor (Gyro)

SILICON^C SENSING

www.siliconsensing.com

The silicon MEMS ring is 6mm diameter by 100µm thick, fabricated by Silicon Sensing Systems using a DRIE (Deep Reactive Ion Etch) bulk silicon process. The ring is supported in free-space by sixteen pairs of symmetrical legs which isolate the ring from the supporting structure on the outside of the ring.

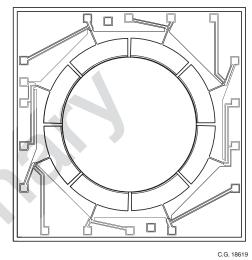


Figure 10.1 Silicon MEMS Ring

The bulk silicon etch process and unique patented ring design enable close tolerance geometrical properties for precise balance and thermal stability and, unlike other MEMS gyros, there are no small gaps to create problems of interference and stiction. These features contribute significantly to CRH02 (OEM)'s bias and scale factor stability over temperature, and vibration immunity. Another advantage of the design is its inherent immunity to acceleration induced rate error, or 'g-sensitivity'.

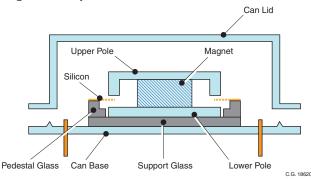
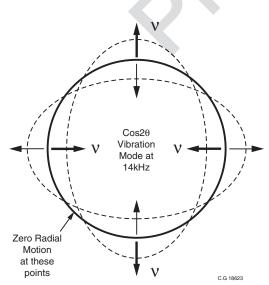


Figure 10.2 MEMS VSG3 Sensor

The ring is essentially divided into 8 sections with two conductive tracks in each section. These tracks enter and exit the ring on the supporting legs. The silicon ring is bonded to a glass pedestal which in

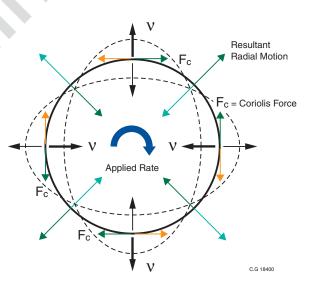

Analogue Angular Rate Sensor

High Performance MEMS Gyroscope - OEM Configuration

turn is bonded to a glass support base. A magnet, with upper and lower poles, is used to create a strong and uniform magnetic field across the silicon ring. The complete assembly is mounted within a hermetic can.

The tracks along the top of the ring form two pairs of drive tracks and two pairs of pick-off tracks. Each section has two loops to improve drive and pick-off quality.

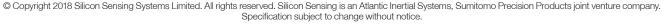
One pair of diametrically opposed tracking sections, known as the Primary Drive PD section, is used to excite the $\cos 2\theta$ mode of vibration on the ring. This is achieved by passing current through the tracking, and because the tracks are within a magnetic field causes motion on the ring. Another pair of diametrically opposed tacking sections is known as the Primary Pick-off PP section is used to measure the amplitude and phase of the vibration on the ring. The Primary Pick-off sections are in the sections 90° to those of the Primary Drive sections. The drive amplitude and frequency is controlled by a precision closed loop electronic architecture with the frequency controlled by a Phase Locked Loop (PLL), operating with a Voltage Controlled Oscillator (VCO), and amplitude controlled with an Automatic Gain Control (AGC) system. The primary loop therefore establishes the vibration on the ring and the closed loop electronics is used to track frequency changes and maintain the optimal amplitude of vibration over temperature and life. The loop is designed to operate at about 14kHz.



Having established the $\cos 2\theta$ mode of vibration on the ring, the ring becomes a Coriolis Vibrating Structure Gyroscope. When the gyroscope is rotated about its sense axis the Coriolis force acts tangentially on the ring, causing motions at 45° displaced from the primary mode of vibration. The amount of motion at this point is directly proportional to the rate of turn applied to the gyroscope. One pair of diametrically opposed tracking sections, known as the Secondary Pick-off SP section, is used to sense the level of this vibration. This is used in a secondary rate nulling loop to apply a signal to another pair of secondary sections, known as the Secondary Drive SD. The current applied to the Secondary Drive to null the secondary mode of vibration is a very accurate measure of the applied angular rate. All of these signals occur at the resonant frequency of the ring. The Secondary Drive signal is demodulated to baseband to give a voltage output directly proportional to the applied rate in free space.

SILICON^C SENSING。

www.siliconsensing.com


Figure 10.4 Secondary Vibration Mode

The closed loop architecture on both the primary and secondary loops results in excellent bias, scale factor and non-linearity control over a wide range of operating environments and life. The dual loop design, introduced into this new Sensor Head design, coupled with improved geometric symmetry results in excellent performance over temperature and life. The discrete electronics employed in CRH02 (OEM), ensures that performance is not compromised.

High Performance MEMS Gyroscope - OEM Configuration

Notes

www.siliconsensing.com

High Performance MEMS Gyroscope - OEM Configuration

Notes

- +44 (0)1752 723330 T:
- F: +44 (0)1752 723331
- E: sales@siliconsensing.com
- W: siliconsensing.com

Silicon Sensing Systems Japan Limited 1-10 Fuso-Cho Amagasaki Hyogo 6600891 Japan T: +81 (0)6 6489 5868 +81 (0)6 6489 5919 F: E: sssj@spp.co.jp

W: siliconsensing.com

Specification subject to change without notice. © Copyright 2018 Silicon Sensing Systems Limited All rights reserved. Printed in England 01/2018 Date 10/01/2018

CRH02-01-0100-132 Rev 2 DCR No. 710014099

© Copyright 2018 Silicon Sensing Systems Limited. All rights reserved. Silicon Sensing is an Atlantic Inertial Systems, Sumitomo Precision Products joint venture company. Specification subject to change without notice.

www.siliconsensing.com